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Abstract. This paper describes progress with our agenda of formal verification
of information-flow security for realistic systems. We present CoSMed, a social
media platform with verified document confidentiality. The system’s kernel is im-
plemented and verified in the proof assistant Isabelle/HOL. For verification, we
employ the framework of Bounded-Deducibility (BD) Security, previously intro-
duced for the conference system CoCon. CoSMed is a second major case study in
this framework. Modeling CoSMed’s confidentiality properties poses interesting
challenges to BD Security, due to the more dynamic nature of information de-
classification. Namely, the static topology of declassification bounds and triggers
that characterized previous instances of BD security has to give way to a dynamic
integration of the triggers as part of the bounds.

1 Introduction
Recent years have seen an explosion of web-based systems aimed at sharing informa-
tion between multiple users in a convenient, but controlled fashion. Examples include
enterprise systems, social networks, e-commerce sites and cloud services. These sys-
tems often deal with confidential information such as credit card details, medical data,
location information and sensitive documents. Unfortunately, most of these systems
offer no guarantees concerning the prevention of unintended flow of information. Pro-
gramming errors leading to information leakage can have different degrees of severity
and can affect millions of users or registered individuals (as with, e.g., the Heartbleed
bug [1]). This type of errors are likely to occur in practice, since web applications en-
gage in intensive exchange of information with the environment. The Open Web Appli-
cation Security Project (OWASP) includes “sensitive data exposure” (with typical “se-
vere” impact) and the related “missing function level access control” (with “moderate”
impact) in their influential list of ten most critical web application security risks [2].

The difficulty of preventing such errors often rests in the fact that information flow
security is a complex, global property of a program, not entirely reducible to access
control. For example, consider a system that stores information on medical patients and
offers selective web access to individuals and companies. A life insurance company
agent should not be given direct access to sensitive information such as a patient suffer-
ing from cancer. Yet, this protection may not prevent propagation of information: if it is
known that certain discounts are only offered to cancer suffering patients, then the agent
can infer that sensitive information if they can access a patient’s available discounts.

Two years ago, we have started a line of work aimed at addressing information flow
security problems of realistic web-based systems by interactive theorem proving (using



our favorite proof assistant, Isabelle/HOL [23, 24]). We have introduced a security
notion that allows a very fine-grained specification of what an attacker is assumed to
be able to observe about the system, and what information is to be kept confidential in
which situations. In our case studies, we assume the observers to be users of the system,
and our goal is to verify that, by interacting with the system, the observers cannot learn
more about confidential information than what we have specified.

As a first case study, we have developed CoCon [15], a conference system (à la
EasyChair) verified for confidentiality. It has been built not as a toy system, but hav-
ing usability in mind—and indeed, CoCon has already been deployed for TABLEAUX
2015 and ITP 2016. At the same time, CoCon has a fairly small kernel, manageable
for verification. With little resources (a few person months) we have verified a compre-
hensive list of confidentiality properties, systematically covering the relevant sources of
information from the application logic [15, §4.5]. For example, besides authors, only
PC members are allowed to learn about the content of submitted papers, and nothing
beyond the last submitted version before the deadline.

This paper introduces a second major end product of this line of work: CoSMed, a
confidentiality-verified social media platform. CoSMed allows human users to register
and post information in the form of notices (containing text and/or images), and to re-
strict access to this information based on friendship relationships established between
users. In addition, it allows web application users (“apps”) to register and selectively ac-
cess information. Architecturally, CoSMed is an I/O automaton formalized in Isabelle,
exported as Scala code, and wrapped in a web application (§2).

For CoCon, we had proved that information only flows from the stored documents to
the users in a suitably role-triggered and bounded fashion. In CoSMed’s case, the “doc-
uments” of interest are friendship requests, friendship statuses, and notices that can be
posted by the users. The latter consist of title, text, and an optional image. The roles in
CoSMed include admin, owner, friend and registered app. Modeling the restrictions on
CoSMed’s information flow poses additional challenges (§3), since here the roles vary
dynamically. For example, assume we prove a property analogous to those for CoCon:
A user U1 learns nothing about the friend-only notices posted by a user U2 unless U1
becomes a friend of U2. Although this property makes sense, it is too weak—given that
U1 may be “friended” and “unfriended” by U2 multiple times. A stronger confiden-
tiality property would be: U1 learns nothing about U2’s friend-only notices beyond the
updates performed while U1 and U2 were friends. This stretches the limits of Bounded-
Deducibility (BD) Security (§3.2), a framework designed for CoCon’s verification. The
previously encountered fixed structure of bounds and triggers gives way to more dy-
namically evolving bounds that incorporate trigger information (§3.3). The verification
proceeds by providing suitable unwinding relations, closely matching the bounds (§4).

CoSMed has been developed to fulfill the functionality and security needs of a char-
ity organization [3]. The current version is a prototype, not yet deployed for the charity
usage. Both the formalization and the running website are publicly available [5, 6].

2 System Description
In this section we describe the system functionality as formalized in Isabelle (§2.1)—we
provide enough detail so that the reader can have a good grasp of the formal confiden-
tiality properties discussed later. Then we sketch CoSMed’s overall architecture (§2.2).
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2.1 Isabelle Specification

Abstractly, the system can be viewed as an I/O automaton, having a state and offering
some actions through which the user can affect the state and retrieve outputs. The state
stores information about users, notices and the relationships between them, namely:

– user information: pending new-user requests, the current user IDs and the associ-
ated user info, the system’s administrator, the user passwords;

– notice information: the current notice IDs and the notices (notice content) associ-
ated to them, including visibility information;

– notice-user relationships: the notice owners;
– user-user relationships: the pending friend requests and the friend relationship.

In addition to (human) users, the system also allows “apps,“ that is, web applications au-
thorized to retrieve notice content from the system—this is to enable web programmers
to make CoSMed notice texts available on external websites, including other notice
boards. Similarly to users who authenticate via passwords, apps authenticate via keys.
All in all, the state is represented as an Isabelle record:

RECORD state=
(* User info: *)

pendingUReqs : userID list userReq : userID→ req userIDs : userID list
user : userID→ user pass : userID→ password admin : userID

(* Friend info: *)
pendingFReqs : userID→ userID list friendReq : userID→ userID→ req
friendIDs : userID→ userID list

(* App info: *)
pendingAReqs : appID list appReq : appID→ req appIDs : appID list
key : appID → key

(* Notice info: *)
noticeIDs : noticeID list notice : noticeID→ notice owner : noticeID→ userID

Above, the types userID, appID, noticeID, password, key and req are essentially strings
(more precisely, datatypes with one single constructor embedding strings). Each pend-
ing request (be it for user or app registration or for friend relationship) stores a re-
quest info (of type req), which contains a message of the requester for the recipi-
ent (the system admin or a given user). The type user contains user names and in-
formation. The type notice of notices contains tuples (title, text, img, vis), where the
title and the text are essentially strings, img is an (optional) image file, and vis ∈
{FriendV, UserV, PublicV} is a visibility status that can be assigned to notices: FriendV
means visibility to friends only, UserV means visibility to all the (human) users, and
PublicV means visibility to all, including the registered apps.

The initial state of the system is completely empty: there are empty lists of reg-
istered users, apps, notices, etc. Users and apps can interact with the system via five
categories of actions: start-up, creation, update, reading and listing.

The actions take varying numbers of parameters, indicating the agent (user or app)
involved and optionally some data to be “posted” into the system. Each action’s behav-
ior is specified by two functions:

– An effect function, actually performing the action, possibly changing the state and
returning an output
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– An enabledness predicate (marked by the prefix “e”), checking the conditions under
which the action should be allowed

When an agent issues an action, the system first checks if it is enabled, in which case
its effect function is applied and the output is returned to the agent. If it is not enabled,
then an error message is returned to the agent and the state remains unchanged.

The start-up action, startSys : state→ userID→ password→ state, initializes the
system with a first user, who becomes the admin:

startSys s uid p ≡
s(admin := uid, userIDs := [uid], user := (user s)(uid := emptyUser),

pass := (pass s)(uid := p))
Here and elsewhere, the following Isabelle notations are used: Given a record s, field
labels l1, . . . , ln and values v1, . . . , vn respecting the types of the labels, we write s(l1 :=
v1, . . . , ln := vn) for s with the values of the fields li updated to vi. We let li s be the
value of field li stored in s. Given f : A→ B, a : A and b : B, we write f (a := b) for the
function that returns b for a and otherwise acts like f .

The start-up action is enabled only if the system has no users:

e_startSys s uid p ≡ userIDs s = []

Creation actions perform registration of new items in the system. They include:
placing a new user or app registration request; the admin approving such a request,
leading to registration of a new user or app; a user creating a notice; a user placing a
friendship request for another user; a user accepting a pending friendship request, thus
creating a friendship connection.

The four main kinds of items that can be created/registered in the system are users,
apps, friends and notices. Notice creation can be immediately performed by any user.
By contrast, user, app and friend registration proceed in two stages: first a request is
created by the interested party, which can later be approved by the authorized party. For
example, a friendship request from uid to uid′ is first placed in the pending friendship
request queue for uid′. Then, upon approval by uid′, the request turns into a friendship
relationship. Since friendship is symmetric, both the list of uid′’s friends and that of
uid’s friends are updated, with uid and uid′ respectively.

There is only one deletion action in the system, namely friendship deletion (“un-
friending” an existing friend).

Update actions allow users with proper permissions to modify content in the sys-
tem: user info, notice content, visibility status, etc. For example, the following action is
updating, on behalf of the user uid, the text of a notice with ID nid to the value text.

updateTextNotice s uid p nid text ≡
s (notice := (notice s)(nid := setTextNotice (notice s nid) text))

It is enabled if both the user ID and the notice ID are registered (predicate IDsOK), the
given password matches the one stored in the state and the user is the notice’s owner.
Besides the text, one can also update the title and the image of a notice.

Reading actions allow users and apps to retrieve content from the system. One can
read user and notice info, friendship requests and status, etc. Finally, the listing actions
allow organizing and listing content by IDs. These include the listing of: all the pending
user and app registration requests (for the admin); all users and apps of the system; all
notices; one’s friendship requests, one’s own friends, and the friends of them.
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Action syntax and dispatch. So far we have discussed the action behavior, consist-
ing of effect and enabledness. In order to keep the interface homogeneous, we distin-
guish between an action’s behavior and its syntax. The latter is simply the input expected
by the I/O automaton. The different kinds of actions (start-up, creation, deletion, update,
reading and listing) are wrapped in a single datatype through specific constructors:

DATATYPE act=Sact sAct |Cact cAct |Dact dAct |Uact uAct |Ract rAct | Lact lAct

In turn, each kind of action forms a datatype with constructors having varying num-
bers of parameters, mirroring those of the action behavior functions. For example, the
following datatypes gather (the syntax of) all the update and reading actions:
DATATYPE uAct=
uUser userID password password name info
| uTitleNotice userID password noticeID title
| uTextNotice userID password noticeID text

DATATYPE rAct=
rUser userID password userID
| rNUReq userID password userID
| rNAReq userID password appID
| rAmIAdmin userID password
| rTitleNotice userID password noticeID
| rTextNotice userID password noticeID
| rImgNotice userID password noticeID

| uImgNotice userID password noticeID img
| uVisNotice userID password noticeID vis

| rVisNotice userID password noticeID
| rOwnerNotice userID password noticeID
| rTitleNoticeByApp appID password noticeID
| rTextNoticeByApp appID password noticeID
| rFriendReqToMe userID password userID
| rFriendReqFromMe userID password userID

We have more reading actions than update actions. Some items, such as new-user,
new-app and new-friend request info, are readable but not updatable.

The naming convention we follow is that a constructor representing the syntax of an
action is named by abbreviating the name of that action. For example, the constructor
uTextNotice corresponds to the effect function updateTextNotice.

The overall step function, step : state→ act→ out× state, proceeds as follows.
When given a state s and an action a, it first pattern-matches on a to discover what kind
of action it is. For example, assume a is an update action, i.e., has the form Uact ua
for ua : uAct. Then one pattern matches on the result, here ua, to discover the par-
ticular form of action. Assume ua has the form uTextNotice uid p nid text. In this
case, one calls (on the current state s) the corresponding enabledness predicate with the
given parameters, e_updateTextNotice s uid p nid text. If this returns False, the result is
(outErr, s), meaning that the state has not changed and an error output is produced. If it
returns True, the effect predicate is called, updateTextNotice s uid p nid text, yielding
a new state s′. The result is then (outOK, s′), containing the new state along with an
output indicating that the update was successful.

Note that start, creation and update actions change the state but do not output non-
trivial data (besides outErr or outOK). By contrast, reading actions do not change the
state, but output data such as user info, notice content or friendship status. Likewise,
listing actions output lists of IDs and other data. The datatype out, of the overall system
outputs, wraps together all these possible outputs, including outErr and outOK.

In summary, all the heterogeneous parametrized actions and outputs are wrapped
in the datatypes act and out, and the step function dispatches any request to the corre-
sponding enabledness check and effect. The end product is a single I/O automaton.
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2.2 Implementation

For CoSMed’s implementation, we follow the same approach as for CoCon [15, §2].
The I/O automaton formalized by the initial state istate : state and the step function
step : state→ act→ out×state represents CoSMed’s kernel, which we formally verify.
This kernel is exported as Scala code using Isabelle’s code generator [12].

Around the exported code, there is a layer of trusted (unverified) code written in
the Scalatra framework—it features a web application for human users and an API for
apps. Although this architecture involves trusted code, there are reasons to believe that
the confidentiality guarantees of the kernel also apply to the overall system. Indeed,
the Scalatra API is a thin layer: it merely forwards requests back and forth between
the kernel and the outside world. Moreover, the web application operates by calling
combinations of primitive API operations, without storing any data itself. Of course,
complementing our secure kernel with a verification that “nothing goes wrong” in the
outer layer (by some language-based tools) would give us stronger guarantees.

3 Stating Confidentiality

Web-based systems for managing online resources and workflows for multiple users,
such as CoCon and CoSMed, are typically programmed by distinguishing between var-
ious roles (e.g., author, PC member, reviewer for CoCon and admin, owner, friend,
registered app for CoSMed). Under specified circumstances, members with specified
roles are given access to (controlled parts of) the documents.

Access control is understood and enforced locally, as a property of the system’s
reachable states: that such action is only allowed if the agent has such role and such
circumstance holds. However, the question whether access control achieves its purpose,
i.e., really restricts undesired information flow, is a global question whose formalization
involves the set of all the system’s execution traces. In the end, we are interested in a
bound not on what an agent can access, but on what an agent can infer, or learn.

3.1 From CoCon to CoSMed

For CoCon, we verified properties with the pattern: A user can learn nothing about a
document beyond a certain amount of information unless a certain event occurs. E.g.:

– A user can learn nothing about the uploads of a paper beyond the last uploaded
version in the submission phase unless that user becomes an author.

– A user can learn nothing about the updates to a paper’s review beyond the last
updated version before notification unless that user is a non-conflicted PC member.

The “beyond” part expresses a bound on the amount of disclosed information. The “un-
less” part indicates a trigger in the presence of which the bound is not guaranteed to
hold. This bound-trigger tandem has inspired our notion of BD security—applicable to
I/O automata and instantiatable to CoCon. But let us now analyze the desired confiden-
tiality properties for CoSMed. For a notice, we may wish to prove:

(P1) A user can learn nothing about the updates to a notice content unless that
user is the notice’s owner or becomes friends with the owner or the notice is
marked as public or user-visible.
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And indeed, the system can be proved to satisfy this property. But is this strong enough?
Note that the trigger, emphasized in (P1) above, expresses a condition in whose pres-
ence our property stops guaranteeing anything. Therefore, since both friendship and
user/public visibility can be freely switched on and off by the owner at any time, re-
lying on such a strong trigger simply means giving up too easily. We should aim to
prove a stronger property, describing confidentiality along several iterations of issuing
and disabling the trigger. A better candidate property is the following:4

(P2) A user can learn nothing about the updates to a notice content beyond
those updates that are performed while one of the following holds: either that
user is the notice’s owner, or he is a friend of the owner, or the notice is marked
as public or user-visible.

In summary, the “beyond”-“unless” bound-trigger combination we employed for Co-
Con will need to give way to a “beyond”-“while” scheme, where “while” refers to the
periods in a system run when the access window is supposed to be open. In other words,
we would need to incorporate (and iterate) the trigger inside the bound. As we show be-
low, this is possible with the price of enriching the notion of observed value to include
access-window data. In turn, this leads to more complex bounds having more subtle
definitions. But first let us recall BD security formally.

3.2 BD Security Recalled
BD security is parameterized by the following data:

– an I/O automaton (state, act, out, istate, step)
– a security model, consisting of:
• a value infrastructure (val, ϕ, f )
• an observation infrastructure (obs, γ, g)
• a declassification trigger T
• a declassification bound B

In the automaton, we call the inputs “actions.” Then state, act, and out are the
types of states, actions, and outputs, respectively, istate : state is the initial state, and
step : state→ act→ out× state is the one-step transition function. Transitions are
tuples describing an application of step:

DATATYPE trans = Trans state act out state

A transition trn = Trans s a o s′ is called valid if it corresponds to an application of the
step function, namely step s a = (o, s′). Traces are lists of transitions:

TYPE_SYNONYM trace = trans list

A trace tr = [trn0, . . . , trnn−1] is called valid if it starts in the initial state istate and all
its transitions are valid and compose well, in that, for each i < n− 1, the target state
of trni coincides with the source state of trni+1. Valid traces model the runs of the
system: at each moment in the lifetime of the system, a certain trace has been executed.
All our formalized security definitions and properties quantify over valid traces and
transitions—to ease readability, we shall omit the validity assumption, and pretend that
the types trans and trace contains only valid transitions and traces.

In the security model, we have the types:
4 As it will turn out, this property needs to be refined in order to hold. We’ll do this in §3.3.
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– val, of values of interest (which could have also been called “secrets”)
– obs, of possible results of observations

as well as the functions
– ϕ : trans→ bool, filtering the transitions that produce values of interest
– f : trans→ val, producing a value out of a transition
– γ : trans→ bool, filtering the transitions that produce observations
– g : trans→ obs, producing an observation out of a transition

Given a system trace tr, we let:
– V tr be the list of values produced by filtering the transitions of tr with ϕ and

applying f to them
– O tr be the list of observations produced by filtering the transitions of tr with γ and

applying g to them
Formally, we have V = filtermap ϕ f and O = filtermap γ g, where filtermap : (α→
bool)→ (α→ β)→ α list→ β list is a polymorphic combinator defined as follows:

filtermap P h [] ≡ []
filtermap P h (x # xl) ≡ (if P x then [h x] else []) @ filtermap P h xl

with # and @ being cons and append for lists.
The binary relation B : val list → val list → bool, called the bound, expresses a

form of indistinguishability in the space of all possible sequences of values. Finally,
T : trans→ bool is predicate on transitions called the trigger. We write never T for the
predicate on traces stating that T holds for none of the trace’s transition.

In this context, BD security states that O cannot learn anything about V beyond B
unless T occurs. Formally:

For all traces tr and value lists vl′ such that B (V tr) vl′ and never T tr hold,
there exists a trace tr′ such that V tr′ = vl′ and O tr′ = O tr.

Intuitively, BD security requires that, if B vl vl′ holds and the trigger has not occurred,
then observers cannot distinguish vl from vl′ via their observations—if vl is consistent
with a given observation, then so must be vl′. Classical nondeducibility [25] corresponds
to B being the total relation—the observer can then deduce nothing about the secret
values. Smaller relations B mean that an observer may deduce some information about
the value, but nothing beyond B—for example, if B is an equivalence relation, then
the observer may deduce the equivalence class, but not the concrete value within the
equivalence class.

3.3 CoSMed Confidentiality as BD Security
Next we show how to capture CoSMed’s properties as BD security. We first look in
depth at one property, notice confidentiality, expressed informally by (P2) from §3.1.

Let us attempt to choose appropriate parameters in order to formally capture a con-
fidentiality property in the style of (P2). The I/O automaton will of course be the one
described by the state, actions and outputs from §2.1.

For the security model, we first instantiate the observation infrastructure (obs, γ, g).
The agents that can observe the system are users and apps, so we factor in both cat-
egories. Moreover, instead of assuming a single observer, we wish to allow coalitions
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of an arbitrary number of agents—this will provide us with slightly stronger security
guarantees. Finally, from a transition Trans s a o s′ issued by a user or app agent, it is
natural to allow the agent to observe both their own action a and the output o.

Formally, we take the type obs of observations to be act×out and the observation-
producing function g : trans→ obs to be g (Trans _ a o _) ≡ (a, o). We fix sets UIDs
and AIDs of user IDs and app IDs and define the observation filter γ : trans→ obs by

γ (Trans s a o s′) ≡ (∃uid ∈ UIDs. userOf a = Some uid) ∨
(∃aid ∈ AIDs. appOf a = Some aid)

Above, for any action a, userOf a returns None if there is no user agent performing
the action, and Some uid if the user agent with user ID uid performs the action. The
function appOf a is defined in a similar way for apps. For example:

userOf (updateTextNotice s uid p nid text) ≡ Some uid
appOf (readNoticeByApp aid p nid) ≡ Some aid

In summary, the observations are all actions issued by members of two fixed sets UIDs
(of users) and AIDs (of apps), together with the outputs that these actions are producing.

Let us now instantiate the value infrastructure (val, ϕ, f ). Since the property (P2)
talks about the text of a notice, say, identified by NID : noticeID, a first natural choice
for values would be the text updates stored in NID via updateTextNotice actions. That
is, we could have the filter ϕ a hold just in case a is such a (successfully performed)
action, say, updateTextNotice s uid p nid text, and have the value-producing function
f a return the updated value, here text. But later, when we state the bound, how would
we distinguish updates that should not be learned from updates that are OK to be learned
because they happen while the access window is open—e.g., while a user in UIDs is the
owner’s friend? The bound clearly needs this distinction—indeed, it states that nothing
should be learned beyond the updates that occurred during an open access window.

To enable this distinction, we enrich the notion of value to include not only these
notice-text updates, but also the changes in the open-closed status of the access window
for the observers UIDs or AIDs w.r..t. NID. To this end, we define the following state
predicates (where we write ∈ for membership to both sets and lists):

openToUIDs s ≡ ∃uid ∈ UIDs. uid ∈ userIDs s ∧
(uid = owner s nid ∨ uid ∈ friendIDs s (owner s nid) ∨
visNotice (notice s NID) ∈ {UserV, PublicV})

openToAIDs s ≡ ∃aid ∈ AIDs. aid ∈ appIDs s ∧ visNotice (notice s NID) = PublicV
open s ≡ NID ∈ noticeIDs s ∧ (openToUIDs s ∨ openToAIDs s)

Thus, openToUIDs and openToAIDs mark the states when one of the users in UIDs and
one of the apps in AIDs is entitled to access the text of NID. Openness, expressed by
open, holds when NID is registered and one of these two access windows are open.

Now, the value filter ϕ : trans→ bool will record both successful notice-text updates
and the changes in the truth value of open for the state of the transition:

ϕ (Trans _ (Uact (uTextNotice NID _ _ text)) o _) ≡ nid = NID ∧ o = outOK
ϕ (Trans s _ _ s′) ≡ open s 6= open s′

In consonance with the filter, the value-producing function f : trans→ val, where

DATATYPE val = TVal text | OVal bool
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text 6= []→ text′ 6= []

B (map TVal textl) (map TVal textl′)
(1) BO (map TVal textl) (map TVal textl) (2)

BO vl vl′ textl 6= [] ←→ textl′ 6= [] textl 6= []→ last textl = last textl′

B (map TVal textl @ OVal True @ vl) (map TVal textl′ @ OVal True @ vl′)
(3)

B vl vl′

BO (map TVal textl @ OVal False @ vl) (map TVal textl @ OVal False @ vl′)
(4)

Fig. 1: The bound for notice text confidentiality

will retrieve either the updated text or the updated openness status:

f (Trans _ (Uact (uTitleNotice _ _ _ text)) _ _) ≡ TVal text
f (Trans _ _ _ s′) ≡ OVal (open s′)

It remains to define the trigger T : trans→ bool and the bound B : val→ val→ bool.
As discussed in §3.1, our bound will also take responsibility for tracking the repeated
enabledness and disabledness of a trigger-like condition—so here we take the “static”
trigger T to be vacuously false. Now, in order to formalize the desired bound B, we first
note that the values produced from system traces consist of:

– a (possibly empty) block of text updates TVal text1
1, . . . , TVal text1

n1
– possibly followed by a change of status in the access window, OVal True
– possibly followed by another block of text updates TVal text2

1, . . . , TVal text2
n2

– possibly followed by a change of status in the access window, OVal False
– . . . and so on . . .

We wish to state that, given any such value sequence vl (say, produced from a system
trace tr), any other value sequence vl′ that coincides with vl on the open access windows
(while being allowed be be arbitrary on the closed access windows) is equally possible
as far as the observer is concerned—in that there exists a trace tr′ yielding the same
observations as tr and producing the values vl′.

The purpose of B is to capture this relationship between vl and vl′, of coincidence on
open access windows. But which part of a value sequence vl represents such a window?
It should of course include all the text updates that take place during the time when one
of the observers has legitimate access to the notice text—namely, all blocks of vl that
are immediately preceded by an OVal True value.5

But there are other values in the sequence that properly belong to this window:
the last updated text before the access is open, that is, the value TVal textk

nk
occurring

immediately before each occurrence of OVal True. Indeed, for example, when the notice
becomes public or user-visible, a user can see not only upcoming updates to its text, but
also the current text, i.e., the last update before the visibility upgrade.

The definition of B reflects the above discussion, using an auxiliary predicate BO to
cover the case when the window is open. Both predicates are defined mutually induc-
tively as in Fig. 1. (We write @ for list concatenation and last for the function returning
the last element in a list. Moreover, map TVal applied to a list textl = [text1, . . . , textn]
of notice texts produces the list of corresponding values [TVal text1, . . . , TVal textn].)

5 Recall from the definition of f that a value OVal b with b a Boolean marks the fact that the
legitimate-access predicate open has just been made b.
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Source Declassification Bound

1 Notice Text

Updates performed while or last before one of the following holds:
User in coalition is notice owner or friend with notice owner
Coalition has at least one user and notice is public or user-visible
Coalition has at least one app and notice is public

2 Notice Title Same as for Notice Text

3 Notice Image
Uploads performed while or last before one of the following holds:

User in coalition is notice owner or friend with notice owner
Coalition has at least one user and notice is public or user-visible

4
Friendship Status
between two users

Status changes performed while or last before the following holds:
User in coalition is friend with one of the two

5
Friendship Requests
between two users

Existence of accepted requests while or last before the following holds:
User in coalition is friend with one of the two

Fig. 2: CoSMed’s confidentiality properties

Clause (1), the base case for B, describes the situation where the original system
trace has made no change to the access status (w.r.t. the observers), which is initially
entirely restricted. Here, the produced value sequence vl consists of text updates only,
i.e., vl = map TVal text. It is indistinguishable from any alternative sequence of updates
vl′ = map TVal text′, save for the following corner case: An observer can learn that vl
is empty, e.g., by inferring that a notice ID does not exist. Such harmless knowledge is
factored in by asking that vl′ (i.e., textl′) be empty whenever vl (i.e., textl) is.

Clause (2), the base case for BO, handles sequences of values produced during open
access to the observers. Since here information is entirely exposed, the corresponding
sequences of values from the alternative traces have to be identical to the original.

Clause (3), the inductive case for B, handles sequences of values map TVal textl
produced while the access window is closed. The difference from clause (1) is that here
we know that the window will eventually open—this is marked by the occurrences of
OVal True in the conclusion, followed by a remaining value sequence vl. As previously
discussed, the only constraint on the sequence of values produced by the alternative
trace, map TVal textl′, is that it ends in the same value—hence the condition that the
sequences be empty at the same time and have the same last element. Finally, clause
(4), the inductive case for BO, handles the values produced during open access window
on a trace known to eventually close the window.

With all the parameters in place, we have a formalization of notice text confidential-
ity, namely, the BD-security instance for these parameters. However, we saw that the
open access windows need to be larger than initially suggested, hence (P2) is bogus as
currently formulated. It needs to be refined by factoring in the last updates before access
windows in addition to the updates performed during access windows. If we also factor
in the generalization from a single user to a coalition of users and apps, we obtain:

(P3) A coalition of users and apps can learn nothing about the updates to a
notice content beyond those updates that are performed while one of the fol-
lowing holds or last before one of the following starts to hold:
- a user in the coalition is the notice’s owner or a friend of the notice’s owner,
- there is at least one user in the coalition and the notice is public or user-visible,
- there is at least one registered app in the coalition and the notice is public.
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3.4 More Confidentiality Properties

So far, we have discussed confidentiality for notice content (i.e., text). However, a notice
also has a title and an image. In addition to notices, another type of information with
confidentiality ramifications is that about friendship between users. The table in Fig.
2 summarizes all the confidentiality properties we have verified for CoSMed—where
property 1 corresponds to notice content confidentiality (P3).

Notice titles (2) can be shown to have the same confidentiality status as contents. By
contrast, notice images (3) are slightly more confidential, in that they are not accessible
by apps—the bound is changed accordingly, by removing the condition involving apps.

The confidentiality of friendship status and friendship requests (4 and 5) have a
structure similar to notice confidentiality. The observation setup consists of a coalition
of users and apps, (UIDs, AIDs), and two arbitrary but fixed users UID1 and UID2 not
belonging to the coalition. Since the system allows the listing of the friends of one’s
friends, observers can learn about the current friendship status between UID1 and UID2
(and updates to this status) once they become friends with one of them. Hence, the
bound follows the same “while”-“last before” scheme as notice confidentiality. How-
ever, here the “produced” values are not text or image content, but rather:

– Boolean values for friendship status, indicating whether the status was changed to
“friend” or “not friend”, and

– pairs of user IDs and strings for friendship requests, indicating who has placed the
request and what the message is.
Property (4) states that the friendship status of UID1 and UID2 remains unknown

to non-friends. More precisely, the only information that flows to the coalition about
this status consists of the “friending” and “unfriending” actions occurring while or last
before one of the users in UIDs is friends with either UID1 or UID2.

Finally, property (5) states that friendship requests remain unknown to non-friends,
and moreover, even to friends: their existence remains unknown unless they are ac-
cepted (hence turning into friendship); and their “orientation” (which of UID1 and UID2
has placed the request) and the messages remain unknown in any case.

4 Verifying Confidentiality

Next we recall the unwinding proof technique for BD security (§4.1) and show how we
have employed it for CoSMed (§4.2).

4.1 BD Unwinding Recalled

When proving a BD security property, we start with an “original” trace tr and an “al-
ternative” value sequence vl′ such that B (V tr) vl′ holds. We then need to provide an
alternative trace tr′ that never satisfies the trigger, produces the same observations as tr,
and produces precisely the values vl.

To streamline this process, our BD security framework provides a notion of un-
winding à la Goguen and Meseguer [11]. The idea is to construct tr′ incrementally, in
synchronization with tr, but “keeping an eye” on vl′ as well. An unwinding relation [15,
§5.1] is a tuple (s, vl, s′, vl′) representing a possible configuration of the unwinding syn-
chronization game: s and vl represent the current state reached by a potential original
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trace and the values that are still to be produced by it; and similarly for s′ and vl′ w.r.t.
the alternative trace.

To keep proof size manageable, the framework supports interconnected unwinding
relations, ∆0, . . . , ∆n. The unwinding conditions require that, from any such configura-
tion for which one of the relations hold, say, ∆i s vl s′ vl′, the alternative trace can “stay
in the game” by choosing to (1) either act independently or (2) wait for the original
trace to act and then choose how to react to it: (1.a) either ignore that transition or (1.b)
match it with an own transition. Namely, we require that one of the following holds:
INDEPENDENT ACTION: There exists an unobservable transition trn′ = Trans s′ _ _ t′

leading to a tuple that is in one of the relations, ∆ j s vl t′ wl′ for j ∈ {1, . . . , n}
REACTION: For all possible transitions trn = Trans s _ _ t one of the following holds:

IGNORE: trn is unobservable (i.e., ¬ γ trn) and again leads to a related tuple,
∆k t wl s′ vl′ for k ∈ {1, . . . , n}

MATCH: There exists an equally observable transition trn′ = Trans s′ _ _ t′ (i.e.,
such that γ trn ←→ γ trn′ and γ trn→ g trn = g trn′) that together with trn leads
to a related tuple, ∆l t wl t′ wl′ for l ∈ {1, . . . , n}

Finally, we require that the initial relation ∆0 is a proper generalization of the bound for
the initial state, ∀vl vl′. B vl vl′→ ∆0 istate vl istate vl′. This corresponds to initializing
the game with a configuration that loads any two values satisfying the bound.

It is useful to think of the unwinding relations as forming a graph: For each i, ∆i
is connected to all the relations into which it “unwinds,” i.e., the relations ∆ j, ∆k or ∆l
appearing in the above conditions.

Theorem 1 [15] If ∆0, . . . , ∆n form a graph of unwinding relations then (the given
instance of) BD security holds.

4.2 Unwinding Relations for CoSMed
In a graph ∆0, . . . , ∆n of unwinding relations, ∆0 generalizes the bound B. In turn, ∆0
may unwind into other relations, and in general any relation in the graph may unwind
into its successors. Hence, we can think of ∆0 as “taking over the bound,” and of all
the relations as “maintaining the bound” together with state information. It is therefore
natural to design the graph to reflect the definition of B.

We have applied this strategy to all our unwinding proofs. The graph in Fig. 4 shows
the unwindings of the notice-text confidentiality property (P3). In addition to the initial
relation ∆0, there are 4 relations ∆1–∆4 with ∆i corresponding to clause (i) for the def-
inition of B from Fig. 1. The edges correspond to the possible causalities between the
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clauses. For example, if B vl vl′ has been obtained applying clause (3), then, due to the
occurrence of BO in the assumptions, we know the previous clauses must have been
either (2) or (4)—hence the edges from ∆3 to ∆2 and ∆4. Each ∆i also provides a rela-
tionship between the states s and s′ that fits the situation. Since we deal with repeated
opening and closing of the access window, we naturally require:

– that s = s′ when the window is open
– that s =NID s′, i.e., s and s′ are equal everywhere save for the value of NID’s text,

when the window is closed

Indeed, only when the window is open the observer would have the power to distinguish
different values for NID’s text; hence, when the window is closed the values are al-
lowed to diverge. Open windows are maintained by the clauses for BO, (2) and (4), and
hence by ∆2 and ∆4. Closed windows are maintained by the clauses for B, (1) and (3),
with the following exception for clause (3): When the open-window marker OVal True
is reached, the NID text updates would have synchronized (last textl = last textl′),
and therefore the relaxed equality =NID between states would have shrunk to plain
equality—this is crucial for the switch between open and closed windows.

To address this exception, we refine our graph as in Fig. 5, distinguishing between
clause (3) applied to nonempty update prefixes where we only need s =NID s′, cov-
ered by ∆1

3, and clause (3) with empty update prefixes where we need s = s′, covered
by ∆2

3. Fig. 7 gives the formal definitions of the relations. ∆0 covers the prehistory of
NID—from before it was created. In ∆1–∆4, the conditions on vl and vl′ essentially in-
corporate the inversion rules corresponding to clauses (1)-(4) in B’s definition, while
the conditions on s and s′ reflect the access conditions, as discussed.

Proposition 2 The relations in Fig. 7 form a graph of unwinding relations, and there-
fore (by Thm. 1) the notice-text confidentiality property (P3) holds.

5 Verification Summary

The whole formalization consists of around 9700 Isabelle lines of code (LOC). The
(reusable) BD security framework takes 1800 LOC. CosMeD’s kernel implementa-
tion represents 700 LOC. Specifying and verifying the confidentiality properties for
CoSMeD represents the bulk, 6500 LOC. Some additional 200 LOC are dedicated to
various safety properties to support the confidentiality proofs—e.g., that two users can-
not be friends if there are pending friendship requests between them. Unlike the con-
fidentiality proofs, which required explicit construction of unwindings, safety proofs
were performed automatically (by reachable-state induction).

Yet another kind of properties were formulated in response to the following ques-
tion: We have shown that a user can only learn about updates to notices that were per-
formed during or last before times of public visibility or friendship. But how can we be
sure that the public visibility status or the friendship status cannot be forged? We have
proved that these statuses can only occur by the standard protocols. These properties
(taking 500 LOC), complement our proved confidentiality by a form of accountability:
they show that certain statuses can only be forged by identity theft.
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∆0 s vl s′ vl′ ≡ ¬ NID ∈ noticeIDs s ∧ s = s′

∆1 s vl s′ vl′ ≡ NID ∈ noticeIDs s ∧ s =NID s′ ∧ ¬ open s ∧
∃textl textl′. vl =map TVal textl ∧ vl′ =map TVal textl′ ∧

textl = []→ textl′ = []
∆2 s vl s′ vl′ ≡ NID ∈ noticeIDs s ∧ s = s′ ∧ open s ∧

∃textl. vl =map TVal textl ∧ vl′ =map TVal textl
∆1

3 s vl s′ vl′ ≡ NID ∈ noticeIDs s ∧ s =NID s′ ∧ ¬ open s ∧
∃textl textl′ wl wl′. vl =map TVal textl @ OVal True # wl ∧

vl′ =map TVal textl′ @ OVal True # wl′ ∧
BO wl wl′ ∧ textl 6= [] ∧ textl′ 6= [] ∧ last textl = last textl′

∆2
3 s vl s′ vl′ ≡ NID ∈ noticeIDs s ∧ s = s′ ∧ ¬ open s ∧

∃wl wl′. vl =OVal True # wl ∧ vl′ =OVal True # wl′ ∧ BO wl wl′

∆4 s vl s′ vl′ ≡ NID ∈ noticeIDs s ∧ s = s′ ∧ open s ∧
∃textl wl wl′. vl =map TVal textl @ OVal False # wl ∧

vl′ =map TVal textl′ @ OVal False # wl′ ∧ B wl wl′

Fig. 7: The unwinding relations for notice-text confidentiality

6 Related Work
Proof assistants are today’s choice for precise and holistic formal verification of hard-
ware and software systems. Already legendary verification works are the AMD micro-
processor floating-point operations [21], the CompCert C compiler [18] and the seL4
operating system kernel [16]. More recent developments include a range of micropro-
cessors [13], Java and ML compilers [17, 19], and a model checker [10].

Major “holistic” verification case studies in the area of information flow security
are rather scarce, perhaps due to the more complex nature of the involved properties
compared to traditional safety and liveness [20]. They include a hardware architecture
with information-flow primitives [9] and a separation kernel [8], and noninterference for
seL4 [22]. A substantial contribution to web client security is the Quark verified browser
[14]. We hope that our line of work, putting CoCon and CoSMed in the spotlight but
tuning a general verification framework backstage, will contribute a firm methodology
for the holistic verification of server-side confidentiality.

Outside the realm of proof-assistant based work, ConfiChair [4] is a competitor for
CoCon verified using the ProVerif process algebra tool. It proposes a cloud model where
authors and reviews cannot be linked to their documents—not even by the system’s
administrator. Finally, there are quite a few programming languages and tools aimed at
supporting information-flow secure programming such as Jif or Spark, including web
programming specifically [7], as well as information-flow tracking tools for the client
side. We foresee a future where such tools will cooperate with proof assistants to offer
light-weight guarantees for free and stronger guarantees (like the ones we proved for
CoCon and CoSMed) on a by-need bases.

Conclusion CoSMed is the first social media platform with confidentiality guarantees.
Its verification is based on BD security, a framework for information-flow security
formalized in Isabelle. CoSMed’s specific confidentiality needs have challenged this
framework and brought us more insight into how to instantiate it.
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APPENDIX: More Details on the Verified Properties

A Confidentiality

We already explained the notice confidentiality properties in detail in §3.3. We now
provide more details on the friendship status and request confidentiality (properties 4
and 5 of Figure 2). As explained in §3.4, we consider these properties wrt. the friendship
of two arbitrary but fixed users UID1 and UID2, while UIDs and AIDs are coalitions of
observing users and apps, respectively.

We define the access window to the friendship information to be open if either an
observer is friends with UID1 or UID2, or if the two users have not been created yet
(because observers know statically that there is no friendship if the users do not exist
yet).

open s ≡ (∃uid ∈ UIDs. uid ∈ friendIDs s UID1∨uid ∈ friendIDs s UID2)
∨(UID1 /∈ userIDs s∨UID2 /∈ userIDs s)

The relevant transitions for the value setup are the creation of users (for the open-
ness) and the creation and deletion of friends (and friend requests in the case of P5). The
creation and deletion of friendship between UID1 and UID2 produces an FVal True or
FVal False value, respectively. In the case of openness changes, and OVal is produced
just as for the notice confidentiality. Moreover, for the friend request confidentiality,
we let cFriendReq transitions involving UID1 and UID2 produce FRVal uid text values,
where uid indicates the user that has placed the request, and text is the request message.

BO (map FVal f s) (map FVal f s) (1) BC (map FVal f s) (map FVal f s′) (2)

BO vl vl′ f s 6= [] ←→ f s′ 6= [] f s 6= []→ last f s = last f s′

BC (map FVal f s @ OVal True @ vl) (map FVal f s′ @ OVal True @ vl′)
(3)

BC vl vl′

BO (map FVal f s @ OVal False @ vl) (map FVal f s @ OVal False @ vl′)
(4)

Fig. 8: The bound on friendship status values

The main inductive definition of the two phases of the declassification bounds for
(P4) and (P5) is given in Figure 8. Note that it follows the same “while”-“last before”
scheme as Figure 1 for the notice confidentiality, but with FVal instead of TVal. The
overall bounds are then defined as BO vl vl′ (since we start in the open phase where
UID1 and UID2 do not exist yet) plus a predicate on the values that captures the static
knowledge of the observers. For (P4), the predicate says that the FVal’s form an al-
ternating sequence of “friending” and “unfriending”. For (P5), it additionally requires
that at least one FRVal and at most two FRVal values from different users have to oc-
cur before each FVal True value. Beyond that, we require nothing about the request
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values. Hence, the bound for (P5) states that observers learn nothing about the friend-
ship requests between UID1 and UID2 beyond the existence of a request before each
successful friendship establishment. In particular, they learn nothing about the orienta-
tion of the requests (who has placed them) and the contents of the request messages, as
summarized already in §3.4.

For unwinding the friendship confidentiality properties, we proceed analogously to
the notice confidentiality. We define unwinding relations, corresponding to the different
clauses in Figure 8, and prove that they unwind into each other and that B vl vl′ implies
∆0 istate vl istate vl′. In the open phase, we require that the two states are equal up
to pending friendship requests between UID1 and UID2. In the closed phase, the two
states may additionally differ on the friendship status of UID1 and UID2, but with the
invariant that if an OVal True value follows later in the value sequence, then either the
status has to be same in the two states, or the last updates before OVal True must be
equal, as defined in clause (3) of Figure 1. This allows us to converge back to the same
friendship status before the transition into the open phase.

B Safety

It was helpful to establish some properties as global invariants of reachable states, which
otherwise only appear locally or implicitly in the pre- and postconditions of individual
actions. For example, we proved that, in each reachable state:

1. The owner of an existing notice in the system is an existing user.
2. Friendship is symmetric.
3. The lists of friends and friend requests contain no duplicates.
4. If a pending friend request exists from one user to another, then the two are not

friends.

This allowed us to write the unwinding relations more succinctly and to simplify the
proofs in several places. For example, the action by UID1 to add UID2 as a friend has
the precondition that the two are not friends already, but with property 4 above, it is
sufficient to know that a request from UID2 to UID1 exists in order to know that the
action is enabled.

C Accountability

For friendship status, we have proved the following: If, at some point t on a system
trace, the users uid and uid′ are friends, then one of the following holds:

– Either uid had issued a friend request to uid′, eventually followed by an approval
(i.e., a successful uid-friend creation action) by uid′ such that between that approval
and t there was no successful uid-“unfriending” (i.e., friend deletion) by uid′ or
uid′-“unfriending” by uid

– Or vice versa (with uid and uid′ swapped)
We have formally stated this by requiring that, given any valid system trace tr start-

ing in the initial state for which the end state has uid and uid′ as friends, we can decom-
pose tr as tr1@[trn]@tr2@[trnn]@tr3, where trn and trnn are transitions and tr1, tr2, tr3
are traces such that:

18



– trn represents the time of the relevant friend request (from uid to uid′ or vice versa)
– trnn represents the time of the approval of this request
– tr3 contains no successful unfriending action between the two users

For notice visibility, we have proved an accountability property similar to friend
status accountability: If, at some point t on a system trace, the visibility of a notice nid
has a value vis, then one of the following holds:

– Either vis is FriendV (as in the initial state)
– Or the notice’s owner had issued a successful “update visibility” action setting the

visibility of nid to vis, and no other successful update actions to nid’s visibility
occurs between that action and t

This was formalized by splitting any valid trace tr similarly to friend status account-
ability, as tr1@[trn]@tr2@trnn@[tr3], where:

– trn represents the time the notice was created by some user uid (who becomes the
owner)

– trnn represents the (last) update of nid’s visibility to vis (necessarily by uid)
– tr3 contains no successful update to the notice visibility
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