
On-the-fly Image Classification
to Help Blind People

Dalal Khalid Aljasem
Dept. of Computer Science

Middlesex University
London, UK

Email: DA716@live.mdx.ac.uk

Michael Heeney, Armando Pesenti Gritti, Franco Raimondi
Dept. of Computer Science

Middlesex University
London, UK

Email: {M.Heeney,A.PesentiGritti,F.Raimondi}@mdx.ac.uk

Abstract—In this paper we present an affordable solution to
help blind people navigate unknown environments. Our solution
performs image classification on a Raspberry Pi and provides
feedback to users by means of vibration motors to signal the
presence of an obstacle in a given direction. The training phase
is performed off-line, while the on-line phase can classify an
image in 1.12 seconds on average. We provide an evaluation
using several thousands images, showing that we can achieve a
precision of 79% and a recall of 79%. All our code and the
hardware design files are released open source.

I. INTRODUCTION

Computer vision, and in particular object detection and
image classification, are mainstream research areas that have
attracted a huge interest in recent year both in academia and in
industry. Big corporations like Google have invested heavily
in deep learning [1] and other cutting-edge techniques, with
applications in nearly all domains, from autonomous cars to
robotics and UAVs.

In parallel, the progress in hardware technologies has made
it possible to develop compact and powerful platforms, such as
the BeagleBone Black (http://beagleboard.org/bone), the Rasp-
berry Pi (https://www.raspberrypi.org) and ODROID (http:
//odroid.com), whose computing capabilities are comparable
to desktop machines of less than 5 years ago. While these
platforms may not be able to operate complex unsupervised
learning algorithms, they are nevertheless powerful enough to
perform a binary classification of images using state-of-the-art
classification algorithms.

In this paper we show how it is possible to employ a
Raspberry Pi and its dedicated camera to classify images in
walkable / non-walkable categories after an initial training
phase. A number of previous approaches to support navigation
for blind people have employed distance sensors (either sonar
or laser), while some recent approaches are investigating the
use of mobile phones acting as a bridge between the user and
on-line, remote servers. Our aim in this paper is to present a
solution that can be implemented using off-the-shelf portable
hardware and software libraries; in particular, we connect the
Raspberry Pi and its camera to a portable battery and to three
vibration motors, assembling all the parts in a wearable belt
that can signal the presence of obstacles in the left/right/middle
direction. All the software and the models described in this pa-
per are available at https://bitbucket.org/mdxmase/intenv2016.

The rest of the paper is organised as follows: we discuss
related work in Section II and we introduce relevant back-
ground on classifiers in Section III. We describe the overall
architecture of the system in Section IV and we present its
evaluation in Section V.

II. RELATED WORK

Our work falls in the general area of image analysis
and in particular we are interested in performing an image
classification task, that is automatically labelling an image as
belonging to one of a specified set of classes.

If we focus on the specific task of helping visually-impaired
people, in the past decade several attempts have been made at
developing technology to support them. A low-cost solution
using a sonar distance sensor is presented in [2]. Infra-red
sensors can be used as well, as described in [3]. In all these
cases there is not attempt at “understanding” a scene: an alarm
is raised when obstacles are detected at a distance below a
certain threshold.

The approach presented in [4] is perhaps closer to our work
in that it employs a Microsoft Kinect to perform depth analysis
and translates depth information to auditory signals, but it is
applicable only to indoor environment given the sensor limits.
Along similar lines, the tool described in [5] operates on the
same principles of translation from depth of field to auditory
signals. What differentiates our approach is the use of image
classification that can potentially detect also obstacles and non-
walkable areas containing dirt that do not present a substantial
depth.

An approach using image recognition is presented in [6].
A 2010 survey of wearable devices for obstacle avoidance
for the blinds is available in [7]. At the time of writing, the
closest approach based on AI techniques seems to be Baidu
DuLight [8], which combines a micro camera with a mobile
phone and bluetooth headsets. Our solution is less ambitious as
it only aims at notifying of the presence of obstacles, instead of
performing a full semantic analysis of the scene. This allows
to keep the cost of our solution down.

III. BACKGROUND ON CLASSIFIERS

An image classification task, as the one we are interested to
perform, can be carried out using two very different high level

Fig. 1: Overall system architecture

approaches. The first one is to explicitly define a model (e.g.
color, shape, luminosity, etc.) of the classes we are considering
and then label the image with the best fitting model. This
approach is feasible only for the cases when it is possible
to easily define such characterising features (e.g. the task of
identify a ball). In our context, it is impossible to a priori
explicitly define which characteristics of the image can allow
us to discriminate walkable/non-walkable parts of the environ-
ment. For this reason we decided to adopt a machine learning
approach, in the specific a supervised learning approach. Given
a sufficient amount of labeled data, the algorithm will learn
to discriminate between the two classes we are considering
without the need of manually engineering a model.

There exists several supervised learning algorithms with dif-
ferent characteristics. We have decided to focus our attention
to three in particular and to compare their performance on our
task:

1) Naive Bayes: very simple probabilistic classifiers based
on applying Bayes’ theorem with strong (naive) inde-
pendence assumptions between the features. It is our
performance baseline.

2) AdaBoost [9]: a meta learning algorithm, that is the
output of weak learning algorithms is combined into
a weighted sum that represents the final output of
the boosted classifier. It is frequently used in image
classification tasks as it can be less susceptible to the
overfitting problem.

3) Support Vector Machines (SVM) [10]: a set of supervised
learning methods used for classification, regression and
outliers detection. We selected this algorithm since its
high expressive power and its effectiveness also in high
dimensional spaces, like the 2D image space we are
considering.

In order to reduce the dimensionality of the input of our
learning algorithm and to obtain a representation invariant
to photometric (e.g. illumination, shadowing, contrast, etc.)
and geometric transformations, we compute the Histogram of
Oriented Gradients (HOG) [11] feature on the image acquired
by the camera.

IV. ARCHITECTURE OF THE SYSTEM

In this section we describe the overall architecture of the
systems, including both hardware and software components

and the external libraries employed. The high-level architec-
ture is depicted in Figure 1. All the code, the experimental
results, the configuration parameters and the trained model
are available from https://bitbucket.org/mdxmase/intenv2016.

At the highest level, the workflow of our approach can be
described as follows:

1) In the initial training phase, images are captured on the
Raspberry Pi from the same position that will be used
in the final product (waist level). We employ the utility
raspivid to capture a continuous video (full HD) and
the utility ffmpeg to extract single frames. This is an
operation that is performed only once and on the paths
that we want to classify, as we expect our application to
be used on repeated paths (e.g. home to work).

2) The images are transferred to a laptop machine where
we perform manual classification. We have implemented
a GUI in Java that automatically reads and splits the
images in three sections (vertically) for left-middle-
right components using OpenCV (http://opencv.org/),
and then asks the user to manually classify them. The
sliced images are stored in separate directories for
“walkable” and “non-walkable” examples. See the code
in Label.java for additional details.

3) We use OpenCV to extract HOG (Histogram of Ori-
ented Gradients) descriptors for the images that have
been classified in the previous step. We refer to the
file Feature.java for details on our choice of pa-
rameters. The code in Preprocess.java extracts
the features from each image and it writes them as
a line in a CSV file, with an additional field for the
walkable/non-walkable classification. The results of the
manually classified images are available in the file
code/img/dataset.csv.

4) The CSV file generated in the previous step is fed into
a data mining / machine learning tool. In our work
we employ Weka [12], as it is open source and it
supports multiple platforms, including the Raspberry Pi.
As described in the following section, we have evaluated
several classifiers, obtaining the best results with Support
Vector Machines (SVM). The output of this step is a
trained classifier, called a model, that is used in the on-
the-fly phase. We make our models available in the files

with extensions .model.
5) The on-the-fly classifier is a Java application that inter-

acts with the camera on the Raspberry Pi. Specifically,
the application implemented in Predict.java loads
in memory an image taken with the Raspberry Pi cam-
era. It then uses OpenCV to slice the image in three
vertical sections. For each section, the HOG features
are computed (see Feature.java) and are then used
as input when invoking an instance of the Weka library,
together with the model generated above. For each of
the three slices, the result of the invocation of Weka in
a number between 0 and 1, expressing the certainty that
a slice is not walkable.

6) The final component of our architecture is the connec-
tion with vibration motors. The hardware circuit we
employ is depicted in Figure 2: three GPIO pins drive
three transistors which, in turn, are connected to three
vibration motors (model 1201 from Adafruit) using three
diodes (notice that the motors need to be powered sepa-
rately, as they require approximately 100mA each). The
code in Predict.java drives these motors: when the
output from Weka is greater than 0.5, i.e., the picture is
classified as non-walkable and the corresponding motor
is activated.

Some excerpts from the class Predict.java are shown
in Figure 3, showing how the various libraries interact in the
run() method of the class. Please see the comments in the
code reported in the figure for additional details.

V. EVALUATION

Accuracy of the classification step can be performed using
Weka in step (4) above. For our purposes, we have collected
images on five public footpaths around Middlesex University
(both indoor and outdoor), recording a total of approximately
15 minutes of videos and extracting approximately 3000 still
frames in varying conditions of light and for different surfaces.
Possible obstacles include: dirt, rubbish bins, potholes, water
puddles, etc. We have classified these images manually, a
process that required approximately 2 hours. The samples
employed comprised approximately 50% of walkable images
and 50% of non-walkable images.

We have evaluated three possible classifiers that are avail-
able in Weka: a simple Bayesian classifier, Adaboost and
SVM. Generating the classifier and running the tests took ap-
proximately 10 minutes on a standard laptop machine (Quad-
core Intel i7 2.5GHz 8 GB of RAM).

Tables I, II and III report, respectively, the results for these
classifiers.

These results show that Adaboost performs slightly better
than a naive Bayesian classifier. On the other hand, SVM
clearly outperforms all the other approaches. We refer to the
files available on-line for more details about these experiments
and for all the configuration parameters employed. Figure 4
shows the Receiver Operating Characteristic (ROC) curves for
the three classifiers. Each curve plots the True positive rate
(i.e., the recall) on the y-axis as a function of the False positive

Class Precision Recall ROC area
Walkable 0.77 0.57 0.73

Non-walkable 0.55 0.76 0.71
Average 0.68 0.64 0.73

TABLE I: Naive Bayesian classifier

Class Precision Recall ROC area
Walkable 0.79 0.65 0.76

Non-walkable 0.60 0.75 0.76
Average 0.71 0.69 0.76

TABLE II: Adaboost

Class Precision Recall ROC area
Walkable 0.79 0.87 0.85

Non-walkable 0.79 0.67 0.85
Average 0.79 0.79 0.85

TABLE III: SVM

rate on the x-axis. A random guess would correspond to the
diagonal, and any curve above the diagonal is an improvement
over the random guess, with larger areas corresponding to
better classifiers. Figure 4 shows visually that the SVM is
clearly superior to the other two options. Notice that in our
evaluation we have considered images from different paths.
While the generated model cannot be taken as a “universal”
classifier for paths, nevertheless it is not limited to a single path
but to 5 paths with different characteristics (concrete, carpet,
off-road path). Accuracy could be improved by focussing on
a single kind of path, possibly configurable by the user. We
leave this for future work.

Another important aspect that we have evaluated is the
performance of our approach on the actual hardware. We have
modified the code capturing and classifying an image on the
Raspberry Pi to compute the time elapsed from invocation
to successful completion of a full classification. This can be
achieved by instrumenting the file Predict.java. We ran
a sequence of 200 images classifications and we obtained an
average classification time of 1.12 seconds with a variance
of 0.1 seconds. Finally, our initial experiments with a 9000
mAh battery show that the approach has an autonomy of
approximately 3 hours.

VI. CONCLUSION

In this paper we have presented a solution that allows on-
the-fly classification of images in walkable / non-walkable
categories using open-source libraries and using Raspberry
Pi as the running platform. We have performed an initial
training phase using a desktop machine and we have obtained
promising results using SVM as a classifier. We then deployed
the classifier on the Raspberry Pi and we obtained a more than
adequate performance of one image classified per second. The
overall cost of the whole solution is below £50. Therefore,
we argue that our approach provides an affordable support
mechanism for visually impaired people, especially in the case
of paths that are repeated daily, such as home to work.

For the future, we plan to investigate more efficient libraries
to replace Weka, possibly implementing our own bespoke

Fig. 2: Hardware circuit

/ / We i m p o r t l i b r a r i e s f o r GPIO pins , f o r t h e Weka
/ / c l a s s i f i e r and f o r OpenCV , which i s used bo th t o
/ / c a p t u r e and t o e x t r a c t HOG f e a t u r e s .
import com . p i 4 j . i o . gp io .∗
import weka . c l a s s i f i e r s . f u n c t i o n s . LibSVM ;
import j a v a . i o . F i l e I n p u t S t r e a m ;
import org . opencv . h i g h g u i . V ideoCap tu re ;
/ / [. . .]
p u b l i c c l a s s P r e d i c t {

/ / [. . .]
p u b l i c vo id run () {

/ / [. . .] S e t t h e p i n s f o r t h e motors :
G p i o C o n t r o l l e r gp io = G p i o F a c t o r y . g e t I n s t a n c e () ;
G p i o P i n D i g i t a l O u t p u t motor1 =
gp io . p r o v i s i o n D i g i t a l O u t p u t P i n (R a s p i P i n . GPIO 04) ;
/ / [. . .] Prepare t h e camera and read t h e image
VideoCap tu re camera = new VideoCap tu re (0) ;
camera . r e a d (image1) ;
/ / [. . .] E x t r a c t t h e f e a t u r e s :
Mat f e a t u r e 1 = F e a t u r e . c o m p u t e F e a t u r e (image1) ;
/ / [. . .] I n s t a n t i a t e s t h e model w i t h t h e f i l e c r e a t e d
/ / o f f−l i n e :
LibSVM model = LibSVM . r e a d (

new F i l e I n p u t S t r e a m (”svm . model ”))) ;
/ / [. . .] C l a s s i f y t h e image :
double [] P1 =

model . d i s t r i b u t i o n F o r I n s t a n c e (f e a t u r e 1) ;
/ / [. . .] A c t i v a t e v i b r a t i o n i f a p p r o p r i a t e .
i f (P1 [0] > 0 . 5) {

System . o u t . p r i n t l n (” Not w a l k a b l e ”) ;
motor1 . h igh () ;

}
}

Fig. 3: Excerpts from the class Predict.java

Fig. 4: ROC curves

classifier. We are also investigating more energy-efficient so-
lutions using different kinds of motors and additional input
mechanisms so that a user can pre-select the kind of path to
be walked and by increasing the number of motors so that
each image could be classified in 5 or more areas, instead of
3.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016.

[2] “Smartcane device,” http://smartcane.saksham.org/, accessed: 2016-03-
10.

[3] A. S. Al-Fahoum, H. B. Al-Hmoud, and A. A. Al-Fraihat, “A smart in-
frared microcontroller-based blind guidance system,” Active and Passive
Electronic Components, vol. 2013, 2013.

[4] M. Brock and P. O. Kristensson, “Supporting blind navigation
using depth sensing and sonification,” in Proceedings of the
2013 ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication, ser. UbiComp ’13 Adjunct. New York,
NY, USA: ACM, 2013, pp. 255–258. [Online]. Available: http:
//doi.acm.org/10.1145/2494091.2494173

[5] “artificialvision,” http://www.artificialvision.com/, accessed: 2016-03-
10.

[6] G. Sainarayanan, R. Nagarajan, and S. Yaacob, “Fuzzy image processing
scheme for autonomous navigation of human blind,” Applied Soft
Computing, vol. 7, no. 1, pp. 257–264, 2007.

[7] D. Dakopoulos and N. G. Bourbakis, “Wearable obstacle avoidance elec-
tronic travel aids for blind: a survey,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 40, no. 1,
pp. 25–35, 2010.

[8] “Baidu dulight,” http://www.wired.com/2016/01/
2015-was-the-year-ai-finally-entered-the-everyday-world/, accessed:
2016-03-10.

[9] Y. Freund and R. Schapire, “A short introduction to boosting,” Journal-
Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p.
1612, 1999.

[10] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
http://dx.doi.org/10.1023/A:1022627411411

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, June 2005, pp.
886–893 vol. 1.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

